Learning as applied to stochastic optimization for standard cell placement

نویسندگان

  • Lixin Su
  • Wray L. Buntine
  • A. Richard Newton
  • Bradley S. Peters
چکیده

Stochastic combinatorial optimization techniques, such as simulated annealing and genetic algorithms, have become increasingly important in design automation as the size of design problems have grown and the design objectives have become increasingly complex. However, stochastic algorithms are often slow since a large number of random design perturbations are required to achieve an acceptable resultùthey have no built-in ôintelligenceö. In this paper, we show that incremental, statistical learning techniques can improve the quality of results and reduce the number of expensive cost-function evaluations for stochastic optimization for a particular solution quality. In particular, simulated annealing was selected as representative stochastic optimization approach and the cell-based layout placement problem was used to evaluate the utility of such a learning-based approach. In this work, we used regression to learn the properties of the solution space and have tested the trained algorithm on a number of examples to demonstrate the improvement gained. A general response model is constructed by learning from the annealing of benchmark circuits. This model is then used in the trained simulated annealing, which returns much better annealing quality than the untrained one for the same number of moves in the solution space. The annealing quality improvement was 15% ~ 43% for the set of examples used in training and 7% ~ 21% when the trained algorithm was applied to new examples. With the same amount of CPU time, the TSA could improve the annealing quality by up to 28% for some benchmark circuits we tested. In addition, the use of the response model successfully predicted the effect of the windowed sampling technique and derived the informally accepted advantages of windowing from the test set automatically.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well Placement Optimization Using Differential Evolution Algorithm

Determining the optimal location of wells with the aid of an automated search algorithm is a significant and difficult step in the reservoir development process. It is a computationally intensive task due to the large number of simulation runs required. Therefore,the key issue to such automatic optimization is development of algorithms that can find acceptable solutions with a minimum numbe...

متن کامل

Optimal Placement and Sizing of DGs and Shunt Capacitor Banks Simultaneously in Distribution Networks using Particle Swarm Optimization Algorithm Based on Adaptive Learning Strategy

Abstract: Optimization of DG and capacitors is a nonlinear objective optimization problem with equal and unequal constraints, and the efficiency of meta-heuristic methods for solving optimization problems has been proven to any degree of complex it. As the population grows and then electricity consumption increases, the need for generation increases, which further reduces voltage, increases los...

متن کامل

Optimal Placement of Capacitor Banks Using a New Modified Version of Teaching-Learning- Based Optimization Algorithm

Meta-heuristics optimization methods are important techniques for optimal design of the engineering systems. Numerous methods, inspired by different nature phenomena, have been introduced in the literature. A new modified version of Teaching-Learning-Based Optimization (TLBO) Algorithm is introduced in this paper. TLBO, as a parameter free algorithm, is based on the learning procedure of studen...

متن کامل

Integrated Well Placement and Completion Optimization using Heuristic Algorithms: A Case Study of an Iranian Carbonate Formation

Determination of optimum location for drilling a new well not only requires engineering judgments but also consumes excessive computational time. Additionally, availability of many physical constraints such as the well length, trajectory, and completion type and the numerous affecting parameters including, well type, well numbers, well-control variables prompt that the optimization approaches b...

متن کامل

A Discrete Hybrid Teaching-Learning-Based Optimization algorithm for optimization of space trusses

In this study, to enhance the optimization process, especially in the structural engineering field two well-known algorithms are merged together in order to achieve an improved hybrid algorithm. These two algorithms are Teaching-Learning Based Optimization (TLBO) and Harmony Search (HS) which have been used by most researchers in varied fields of science. The hybridized algorithm is called A Di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. on CAD of Integrated Circuits and Systems

دوره 20  شماره 

صفحات  -

تاریخ انتشار 1998